Possible Surprises and New Physics

- Neutrino Preliminaries
- Anomalies, alternatives, perturbations
- Alternatives to the Seesaw
- Sterile neutrinos
- Far out possibilities
- What if MiniBooNE sees a positive signal?
- Relic neutrinos

Neutrino Preliminaries

Weyl fermion

- Minimal (two-component) fermionic degree of freedom
- $-\;\psi_L \leftrightarrow \psi_R^c\; ext{by CPT}$
- Active Neutrino (a.k.a. ordinary, doublet)
 - in SU(2) doublet with charged lepton ightarrow normal weak interactions
 - $u_L \leftrightarrow
 u_R^c$ by CPT
- Sterile Neutrino (a.k.a. singlet, right-handed)
 - -SU(2) singlet; no interactions except by mixing, Higgs, or BSM
 - $-~N_R \leftrightarrow N_L^c$ by CPT
 - Almost always present: Are they light? Do they mix?

Dirac Mass

- Connects distinct Weyl spinors (usually active to sterile): $(m_D \bar{\nu}_L N_R + h.c.)$
- 4 components, $\Delta L=0$
- $\Delta I=rac{1}{2} o \mathsf{Higgs}$ doublet
- Why small? LED? HDO?

$$egin{array}{c|ccc}
u_L & v = \langle \phi
angle \\
h & & & \\
N_R & m_D = hv \end{array}$$

Majorana Mass

- Connects Weyl spinor with itself: $\frac{1}{2}(m_Tar{
 u}_L
 u_R^c+h.c.)$ (active); $\frac{1}{2}(m_Sar{N}_L^cN_R+h.c.)$ (sterile)
- 2 components, $\Delta L=\pm 2$
- Active: $\Delta I = 1
 ightarrow {
 m triplet}$ or seesaw
- Sterile: $\Delta I = 0
 ightarrow ext{singlet}$ or bare mass

Mixed Masses

- Majorana and Dirac mass terms
- Seesaw for $m_S\gg m_D$
- Ordinary-sterile mixing for m_S and m_D both small and comparable (or $m_S \ll m_d$ (pseudo-Dirac))

Anomalies, alternatives, perturbations

- Anomalies/indications for new physics
 - LSND
 - NuTeV $(\sin^2 \theta_W = 0.2277(16) \text{ is } 3\sigma \text{ high})$ (Anomalous ν couplings? Z'? QCD effect?)
 - Invisible Z width $(N_{\nu}=2.983(9) \text{ is } 1.9\sigma \text{ low})$ (Fluctuation? Anomalous couplings?)
 - Neutrinoless double beta decay?
 - High energy cosmic rays beyond GZK cutoff
 (New physics?, Z-bursts? Energy calibration uncertainties?)

- Big Bang Nucleosynthesis (BBN)
 - * n_B/n_γ from D abundance agrees with CMB. 4He abundance is rather high for $N_\nu=3)$ (Systematics? Large ν degeneracy?)
 - * Many effects (e.g., Dirac with new interactions, sterile neutrinos) predict even more 4He

- Many ideas once considered alternatives to oscillations amongst the 3 active neutrinos
 - Atmospheric neutrinos: many alternatives could describe the (lower energy) contained events, but most excluded by (higher energy) upward throughgoing. (Often depend on LE or L rather than L/E.)
 - Solar (before KamLAND): several alternatives to LMA
 - Solar (after KamLAND): LMA established
- Can still consider new physics mechanisms as perturbations on dominant 3-flavor oscillations.

Alternatives to the GUT Seesaw

- Elegant mechanism for small Majorana masses
- Leptogenesis
- Expect small mixings in simplest versions (can evade by lopsided e/d, Majorana textures, etc.)
- ullet Large Majorana often forbidden, e.g., by extra U(1)'s
- Direct Majorana masses and large scales forbidden in some string constructions
- GUTs, adjoint Higgs, large Higgs hard to accommodate in simplest heterotic constructions
- LSND: active-sterile difficult in simple versions

- Therefore, explore alternatives, e.g., with small Dirac and/or Majorana masses
 - Small Majorana from loops, R_p violation, or TeV seesaw
 - Small Dirac from large extra dimension or by higher dimensional operators, e.g., in intermediate scale models (e.g. U(1)')

$$L_
u \sim \left(rac{S}{M_{Pl}}
ight)^p L N_L^c H_2, \quad \langle S
angle \ll M_{Pl}$$

$$r \Rightarrow m_{
u} \sim \left(rac{\langle S
angle}{M_{Pl}}
ight)^p \langle H_2
angle$$

(flexible seesaw alternative; can also yield large ordinary-sterile mixing)

- BBN constraints on Dirac neutrinos
 - Mass effects unimportant unless $m_{
 u} \gtrsim 10~{
 m KeV}$
 - New interactions (e.g., TeV scale Z') allow $f\bar{f} \rightarrow \nu_R \bar{\nu}_R$ by Z' or Z-Z' mixing; strongly constrained unless near decoupling (natural flat directions?)

- Leptogenesis
 - Promising scenario for baryogenesis
 - Out of equilibrium decays of

$$N_{heavy} \rightarrow l + \text{Higgs} \neq N_{heavy} \rightarrow \bar{l} + \text{Higgs}$$

created a lepton asymmetry

- Electroweak tunneling (actually thermal fluctucation) then converts some of the lepton asymmetry into a baryon asymmetry!
- Difficulties in supersymmetric version: gravitino problem suggests reheating temperature too low (unless N_{heavy} produced nonthermally or light gravitino)
- Electroweak baryogenesis may be viable alternative
 - * Small parameter space for MSSM (small Higgs, stop masses)
 - * Adequate asymmetry for U(1)' model

Sterile neutrinos

- Motivations (not all for same mass range)
 - LSND (need 4 mass eigenstates for LSND, Solar, atmospheric)
 - Improve LMA fit: Homestake rate low, no low energy turnup
 - r-process nucleosynthesis
- Theoretical difficulties
 - Almost all u mass models involve sterile neutrinos, but
 - Are they light? (Not in seesaw)
 - Do active and sterile neutrinos mix?
 (Not for Dirac or pure Majorana)

- Need small/comparable Dirac and Majorana (or active-singlet, singlet-singlet) masses without canonical seesaw or SUSY protection of low scale
- Intermediate scale models? Large extra dimensions? Mirror worlds?

Figure 1: The six four-neutrino mass spectra, divided into the classes (3+1) and (2+2).

Models and spectra

- 2-2 models give very poor fit to Solar/atmospheric (Extra parameters?)
- 3-1 probably excluded by reactor and accelerator disappearance
- 3-2 give better fit, e.g., $\Delta m^2_{41} \sim 1 \; {
 m eV^2}, \quad \Delta m^2_{51} \sim 20 \; {
 m eV^2}$
- Would lead to rich oscillation physics
- BBN (and large scale structure) constraints
 - Hard to avoid thermalizing the sterile neutrino(s)
 - Can delay thermalization for large $\left(O(0.01-0.1)\right)$ neutrino asymmetry
 - Problem aggravated in 3-2 schemes, but no detailed analysis

Far out possibilities

- Large extra dimensions, KK towers
- Mixing with heavy neutrinos (including nonorthogonal)
- Magnetic moments (SP, RSFP, RSFP + oscillations)
- Neutrino decay
- Decoherence, e.g. from large ν background (Tends to equilibrate flavors. Dominant unlikely)
- Equivalence Principle (VEP), Lorentz Invariance (LIV)
 (LE, excluded as dominant)
- CPT violation

- New interactions
- Neutrino-antineutrino oscillations
- Large neutrino degeneracies

Large extra dimensions, KK towers

ullet Fundamental scale $M_F\sim 1-100~{
m TeV}\ll ar{M}_{Pl}=1/\sqrt{8\pi G_N}\sim 2.4 imes 10^{18}~{
m GeV}$

Assume δ extra dimensions with volume $V_\delta\gg M_F^{-\delta}$

$$ar{M}_{Pl}^2 = M_F^{2+\delta} V_\delta \gg M_F^2$$

(Introduces new hierarchy problem)

Black holes, graviton emission at colliders!

- Assume one dimension much larger than $\delta-1$, which are much larger than M_F^{-1}
- Sterile neutrinos $N_{L,R}$ can propagate in bulk with gravitons (other matter confined to brane)

ullet Lowest N_R are Dirac partners of active u_L on brane, with volume suppressed Yukawa couplings

$$m_D \sim h v M_F/ar{M}_{Pl}$$

h is a Yukawa coupling, v is electroweak scale. For $h\sim 1$ and $M_F\sim 100$ TeV, $m_D\sim 10^{-2}$ eV

- No light on mixings
- Kaluza Klein (KK) towers of sterile neutrino excitations (lepton number conserving in simplest scheme)
- Original: use oscillations into tower for Solar/atmospheric. Now: leakage into sterile as perturbation
- Minimal scheme: small Dirac masses and KK (kinetic) masses: no LSND enhancement (cancellations between towers)
- Can add additional effects, e. g. extra Majorana masses

Upper bounds on R (cm) at 90% c.l. and the corresponding lower bounds on 1/R (eV)

Experimental Bounds					
Experiment	Hierarchical	Inverted	Degenerate		
	(cm, eV)	(cm, eV)	(cm, eV)		
CHOOZ	$(9.9 \times 10^{-4}, 0.02)$	$(3.3 \times 10^{-5}, 0.60)$	$(1.8 \times 10^{-6}, 10.9)$		
BUGEY	none	$(4.3 \times 10^{-5}, 0.46)$	$(2.4 \times 10^{-6}, 8.3)$		
CDHS	none	none	$(5 \times 10^{-6}, 4)$		
Atmospheric	$(8.2 \times 10^{-5}, 0.24)$	$(6.2 \times 10^{-5}, 0.32)$	$(4.8 \times 10^{-6}, 4.1)$		
Solar	$(1.0 \times 10^{-3}, 0.02)$	$(8.9 \times 10^{-5}, 0.22)$	$(4.9 \times 10^{-6}, 4.1)$		

Mixing with heavy neutrinos (including nonorthogonal)

- ullet Mixing of ordinary neutrinos with heavy $(M>M_Z/2)$ neutrinos
 - Need enhanced mixings
 - Active? (Fourth family disfavored by precision)
- Reduced couplings: can account for NuTeV, but affects G_F (Problems for M_W , M_Z vs asymmetries, and possibly CKM universality (but V_{us} ?))
- Nonorthogonal neutrinos: neutrino mixing matrix for light neutrinos is nonunitary due to mixing with heavy

$$\sum_{i=1}^{3} V_{ei}^* V_{\mu i} = -\sum_{i=4}^{N} V_{ei}^* V_{\mu i}
eq 0$$

- ullet In $\mu^+ o ar
 u_\mu^{
 m light} e^+
 u_e^{
 m light}$, where $ar
 u_\mu^{
 m light} \equiv \sum_{i=1}^3 V_{\mu i} ar
 u_i$, $ar
 u_\mu^{
 m light}$ can rescatter to produce e^+ (independent of L/E)
- ullet However, NOMAD $u_{\mu}{
 ightarrow}
 u_{e}$ limits make too small for LSND
- May be small CP violating effects in SBL expriments

Magnetic moments (SP, RSFP, RSFP + oscillations)

- Dirac: direct and transition
- Majorana: transition only
- Lab limits: $|\mu_{
 u}| \lesssim 10^{-10} \mu_B$
- ullet Astrophysical limits: $|\mu_
 u| \lesssim {
 m few} imes 10^{-12} \mu_B$
- ullet Theory: expect $\mu_
 u\sim 10^{-19}\mu_B(m_
 u/1\ {
 m eV})$ unless symmetry decouples $m_
 u,\mu_
 u$

- Solar: first motivated by Sunspot correlations, but can still be present (now subleading) for fields deeper in Sun (depends on poorly known Solar field)
- Spin precession (SP) in Sun (Dirac): $\nu_{eL} \rightarrow \nu_{eR}$
- ullet Resonant spin flavor precession (RSFP) in Sun $u_{eL} {
 ightarrow}
 u_{\mu R}^c$
- ullet RSFP + oscillations, $u_{eL}{
 ightarrow}
 u_{eR}^c$ at possibly observable level

Neutrino decay

- Relevant modes
 - Radiative: $\nu_2 \rightarrow \nu_1 \gamma$ small by limits on transition moments and nonobservation of diffuse relic background, etc.
 - $-\nu_2 \rightarrow \nu_1 \nu_1 \bar{\nu}_1$, too slow
 - $-\nu_2 \rightarrow \nu_1 X$, $\bar{\nu_1} X$, X = Majoran possible (Can consider constraints from disappearance or including ν_1)
 - Large scale structure
- Strong constraints on lifetime from Solar spectrum (Could obtain $\bar{\nu}_e$)
- Most parameter ranges for atmospheric not viable
- High energy astrophysical neutrinos: can have distortion of canonical $u_e: \nu_\mu: \nu_\tau = 1:1:1$

(which follows for initial 1:2:1 and maximal $u_{\mu}u_{ au}$ mixing)

TABLE I. Flavor ratios for various decay scenarios.

Unstable	Daughters	Branchings	$\phi_{ u_e}{:}\phi_{ u_\mu}{:}\phi_{ u_ au}$
ν_2, ν_3	anything	irrelevant	6:1:1
$ u_3$	sterile	irrelevant	2:1:1
ν_3	full energy degraded ($\alpha = 2$)	$B_{3\to 2}=1$	1.4:1:1 1.6:1:1
ν_3	full energy degraded ($\alpha = 2$)	$B_{3\to 1}=1$	2.8:1:1 2.4:1:1
ν_3	anything	$B_{3\to 1} = 0.5$ $B_{3\to 2} = 0.5$	2:1:1

CPT violation

- Motivated as alternative explanation for LSND
- Need deviation from local field theory
 (In principle from strings, LED, background fields)
- Different ν and $\bar{\nu}$ spectra allow 3 mass differences
- $ullet ar
 u_{\mu}{
 ightarrow}ar
 u_{e} \quad ({
 m not} \quad
 u_{\mu}{
 ightarrow}
 u_{e}) \quad {
 m for} \quad {
 m LSND}$
- Lose Solar (excluded by KamLAND) or atmospheric range for $\bar{\nu}$

- ullet 2
 u+ CPT probably excluded
- $3\nu+$ CPT probably excluded (and no evidence w/o LSND)
- $4\nu + CPT$ fits data
- Future: MINOS atmospheric, MiniBooNE

New interactions

- Strongly constrained by precision EW (hard to accomodate NuTeV)
- FCNC in Sun rather than oscillations (original Wolfenstein paper!) now excluded by KamLAND, but could be perturbation
- Alternative explanation of LSND: L flavor violating interaction $\mu^+ \rightarrow e^+ \bar{\nu}_e \nu_\mu$ (but rare mu decays), or L violation $\mu^+ \rightarrow e^+ \bar{\nu}_e \bar{\nu}_i$
- Would not be seen by MiniBooNE (π decay)
- Excluded by KARMEN at rate needed for LSND (no distance effect)
- Future: TWIST at TRIUMF (μ decay)

Neutrino-antineutrino oscillations

- Search for wrong sign lepton produced in neutrino scattering $(\pi^+{\to}\mu^+\nu, \quad \nu p{\to}\mu^+X)$
- New operators? Stringent limits from decays
- Majorana neutrinos don't conserve L, but need helicity flip
- Can produce wrong helicity in decay or flip in rescattering (e.g., $\pi^+ \rightarrow \mu^+ \bar{\nu}_R$), but rate suppressed by $(m_{\nu}/E_{\nu})^2$
- Lepton number violating oscillations can be large in sterile ν schemes (e.g., $\nu_L \rightarrow N_L^c$), but resulting state is sterile; must invoke new interaction (e.g. W_R) or more complicated exotic fermion mixings (N_L^c not really sterile)
- Confusion of $\nu_{\mu} {\to} \bar{\nu}_{\mu}$ with $\bar{\nu}_{e} {\to} \bar{\nu}_{\mu}$ in $\mu^{-} {\to} e^{-} \nu_{\mu} \bar{\nu}_{e}$

model	parameters	$\frac{\mu^+ events}{\mu^- events}$
Pure Majorana	$m_{ u_{\mu}}$	$< 10^{-10}$
Spin precession	$ \mu_{\nu_{\mu}} < 7.4 \times 10^{-10} \mu_B$	$< 2 \times 10^{-6}$
in B_{\perp}	$\Delta m^2 \sim 10^{-5} \ eV^2$	$(L \sim 1 \ km)$
Neutrino Decay	$h_2^2 < 0.1, \ m_{\nu_{\mu}} \sim 10 \ eV, \ \sin^2 2\theta_{\mu} < 0.02$	$< 4 \times 10^{-7}$
$SU(2)_L \times SU(2)_R \times U(1)$	$ \xi_g < 0.003, \ \beta_g < 0.004$	$< 3 \times 10^{-7}$
	$\sin^2 2\theta_{\mu} < 0.02$ for $\Delta m^2 = 100~eV^2$	$(L \sim 1 \ km)$
Exotic fermions	$ U_{13}^2 < 0.027, \ \theta_{\mu R}, \ \theta_{\mu L} \sim 0.0014$	$<4\times10^{-8}$

TABLE I. μ^+ , μ^- events ratio of high energy ν_{μ} ($\sim 1~GeV$) N scattering for five neutrino-antineutrino oscillation scenarios. (e^+ , μ^- events ratio for the spin precession scenario.)

Large neutrino degeneracies

- ullet Expect $n_
 u$ $n_{ar
 u} \sim 10^{-10} n_
 u$
- ullet However, O(0.01-0.1) asymmetry important for BBN
- Hint from 4He abundance
- ullet Suppresses or compensates sterile production or u_R in U(1)'

What if MiniBooNE sees a positive signal?

- No very satisfactory explanation: all suggestions have theoretical, observational, and possibly cosmological difficulties
- All the more interesting if found
 - New interactions: origin?
 - Sterile neutrino: look for L/E dependence. Much richer for oscillation experiments
 - CPT violation: compare ν_{μ} and $\bar{\nu}_{\mu}$. Profound consequences; nonlocal physics

Relic neutrinos

- ullet $u_i, ar{
 u}_i$ decoupled at $T_D \sim {\sf few} \; {\sf MeV}$
- Now at 1.9 K, 50/cm³ for each d.o.f
- ullet For hierarchical pattern $\langle v_3
 angle \sim 10^{-2}, \;\; \langle v_2
 angle \sim 10^{-1}$
- ullet For degenerate pattern, $\langle v_i
 angle \sim 2{ imes}10^{-3}\left(rac{0.23~eV}{m_i}
 ight)$
- ullet Little clustering unless $m_i \gtrsim 0.3~eV$, and then on supercluster scale

- Important for large scale structure and BBN
- Direct detection (scattering, torques, forces) impractical
- Scattering of high energy cosmic ray neutrinos (Z-burst)
 - Account for $E_p > \mathsf{GZK}$?
 - Future observation? Depends on unknown flux of UHE u

Conclusions

- Nature is probably a standard 3 ν hierarchy
- But be ready for surprises